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Abstract-Liquid metal within metal walls under a magnetic field is stirred thermoelectrically if the 
interfacial temperature is non-uniform. When there are areas of interface parallel to the uniform magnetic 
field, fast boundary layers occur, exchanging fluid with the central region. Outside these layers, viscosity and 
inertia may he neglected if the magnetic field is strong. Motions in long ducts of rectangular cross-section, 
closed cylinders coaxial with the field, and cubical containers are investigated. As the interface temperature is 

assumed to he known ab i&o, the strong effects of heat convection are not explored. 

NOMENCLATURE 

B, B, magnetic field ; 

C, aaita,, c’ = bolta,; 

8, Seebeck emf; 

G, W+B$; 

6 current stream function ; 

M, Wdrl) liz, Hartmann number; 

Q,, Qm Q,n Qn components of boundary layer flow 
integral ; 

WV), absolute thermoelectric power of fluid 
(wall); 

T, tan h(na/b) (or temperature); 

u, pseudo-potential in wall parallel to B; 

V, pseudo-potential in wall normal to B; 

W, pseudo-potential in fluid; 

a, semiwidth of duct or container; 

b, cylinder radius or duct height; 

c, C’l’(a; 

h, mesh step size ; 
. 
JLL current intensity; 
.I 
15 current intensity in planes z = const.; 

m, number of mesh steps; 

4 normal distance (see Fig. 1); 

P, fluid pressure ; 
s, tangential distance (see Fig. 1); 

t, wall thickness; 

“9 4 velocity. 

Greek symbols 

4J,), electrical conductivity of fluid (wall), 
assumed constant; 

5-3 viscosity; 

ICI> stream function. 

1. INTRODUCTION 

UNDER an imposed magnetic field, thermoelectric 
currents cause stirring of a liquid metal in a metal 
container when the interface temperature is non- 
uniform. Such a phenomenon could have relevance to 
controlled fusion or metallurgical technology. For 
instance, for liquid lithium cells in the blanket of a 

magnetically-confined fusion reactor, heated by neut- 
rons and cooled by helium circulation, temperature 
distributions calculated on the assumption of static 
fluid could be grossly in error because of the stirring 
(lithium has unusually high thermoelectric power). 
Similarly, the possibility of achieving desirable stirring 
during the solidification of melts in metallurgy is 
worthy of investigation. 

This paper extends earlier studies [l-3], of which 
[l] discussed the size of the effect in practice and 
analysed motions in long circular ducts, whereas [2] 
and [3] examined TEMHD in closed containers. [l] 
and [2] specifically excluded cases where finite por- 
tions of the interface are parallel to the magnetic field 
but [3] considered circular pipes of finite length closed 
by plane ends parallel to the field. This paper explores 
other problems where some walls are parallel to the 
field, the other two walls being plane and normal to the 
uniform imposed magnetic field. The problems are 
specified in terms of known distributions of tempera- 
ture and hence of Seebeck emf over the wall-fluid 
interface; at this early stage in the subject there is quite 
enough complication without having to explore the 
perturbation of the heat supply necessary to maintain 
these temperatures in the face of the convection which 
ensues when the magnetic field is applied. The effect 
can be quite severe because significant Pecltt numbers 
can occur [2]. 

In practice, any magnetic field due to the currents is 
negligible and inertia forces are usually insignificant in 
comparison with magnetic forces. Each problem is 
then linear and appropriate solutions may be con- 
veniently superposed. As the Hartmann number M is 
large, there are boundary layers on walls parallel to the 
field of thickness 0(&f- ‘I’) (if laminar) and Hartmann 
layers of thickness O(M- ‘) on the other walls, while the 
core flow elsewhere is inviscid. The importance of wall 
impedance is measured by the parameter C and is 
small compared with boundary-layer impedance be- 
cause C is normally small compared with M and Mli2. 

Then the Hartmann layers are entirely negligible but 
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the fluid in the layers parallel to the field may travel so 
fast that they can carry significant Row and ‘hold off’ 
significant potential drops by ~l~tromagnetjc in- 
duction, as [3] showed. It is possible to proceed 
without solving for their structure in detail and so it is 
not necessary to neglect inertia in those layers (which 
might even be turbulent) provided they are still thin. In 
the container problems solved here the ftow passes 
between the core and the high-speed layers. 

We take the walls to be thin (I C< (I) in order to treat 
wall current flow as quasi-two-dimensional and to 
ignore the fine structure of current flow round corners 
in the walls. We take the z-axis in the direction of the 
magnetic field and the r-axis axial in duct flow 
problems. The plane walls normal to the field are at 2 
= fu, as in Fig. 1. 

In view of the dependency of the heat convection on 
the vigour of the stirring process, some attention is 
given to those extreme cases in which either there is no 
motion or there is ‘free’ motion, where the fluid can 
accelerate until Y x B and Seebeck emf’s balance and 
currents cease. 

2. GOVERNING EQUATIONS 

In the inviscid, inertia-free core, the j x B force 
balances the pressure gradient and is therefore irro- 
tational, so that j is independent of z and 

div j’ = 0, (11 

j, being the current intensity in planes z = const. 
Ohm’s law in TEMHD is 

j/c = v x B - grad W (2) 

in which 

W = electric potential + 
i 

SdT, (3) 
. . 7.1, 

To being a datum temperature. We repface W by t/ or 
U respectively in walls normal or parallel to B. At the 
interface 

W = C’ (or U) + 8, (4) 

where the Seebeck emf R = SF0 (S - S,,)dT, a function 
of the interface temperature. At the high-speed layers, 
W in (4) must be taken at the wall proper, not the edge 

of the core. The curl of (2) in the fluid makes v linear in z 
if we take the fluid as incompressible, with 

div v zz 0. $5) 

As the Hartmann layers are thin and move at slow 
speed, I’, vanishes at the walls z I-- l;-u and, being 
linear in z, vanishes throughout the core. From (5) we 
may then set 

r’, = ;lr///‘(?J and I’). = --?$/c’.x (61 

and (2) allows us to take G = W + Bli, as independent 
of z, with 

j’ = -@grad G i?‘) 

and 

V’G = 0, i8) 

in view of (1). At the walls parallel to B, the high 
impedance layers have negligible effect on the normal 
component of j’, which may be taken as equal to the 
value at the edge of the core. 

Although in the core r, = 0, this is not true in 
general in the layers parallel to B, across which we 
define two flow integrals 

Q, = jc,dn and Qz = j r; dtr. (9) 

Neglect of the current term in integrating (4) leads to 
the condition 

BQ,=U+A-W (10) 

in which W is the value at the edge of the core. 
Equation (10) expresses the ‘holding off’ of p.d. by the 
high-speed layer. $3, vanishes at the rims where d is 
assumed continuous and where we have the further 
conditions 

V = U and iiU/i?z = fav/&t (as appropriate). 

(For simplicity we take all walls as having the same 
thickness and conductivity.) Fluid conservation at the 
layers requires that 

by virtue of (10). Q, also vanishes at the rims, for the 
Hartmann layers cannot accommodate significant 
flows. Equation (12) may therefore be integrated from 
z -= --(1, say, to yield Q,. 

In view of the symmetry in the plane z = 0, it is 
convenient to follow [2] and [3] in considering 
solutions for d odd or even with respect to z separately 
and then superposing them, as necessary. 

2.1. Cp Eveninz 

For the case where 6 is even, [2] showed that in the 
corej, = 0 while W, G and $ are independent of z. In 
the walls 
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and 

azu a2u c ac 
F+g= --a%’ (14) 

By (8) and (13), the core vorticity is given by 

-V’ll, = V28/B, (15) 

8 being the value at the faces z = f a. The vanishing of 
the vorticity does not preclude motion as all stream- 
lines may enter and leave the boundary layers. As j, 
and u, vanish, half of these g-even solutions (e.g. for z 
> 0) may be taken to represent a system having one 
plane wall normal to the magnetic field non- 
conducting (or a horizontal free surface taken to be 
virtually plane) at z = 0. Here Q, is odd in z and zero at 
z = 0 also. Integrating (12) from z = 0 to a and also 
with respect to s gives a boundary condition for G, 
namely 

u + d = Grim + constant, (16) 

in which I? and 8 are mean values with respect to z in 
or at the walls parallel to B. We see that G, I’, U and the 
wall and core currents depend only on 8, and not on 
the detail distribution of b, but the core motion also 
depends on 8 on the walls normal to B according to the 
equation 

B$=G-V-b. (17) 

Q, is determined purely by 8 on the walls parallel to B, 
by the relation 

BQs = U + I - Urim - Brim, (18) 

which shows that Q, can be made zero everywhere by a 
suitable choice of d on the walls parallel to B. Then Q, 
= 0 also and ~,im = const, as the core flow cannot feed 
the layers. 

2.2. 8 Odd in z 

For the case where 8 is odd, [Z] showed that in the 
core the only current component is j,, which is 
independent of z, but W, $, ux, vy are proportional to z. 
In fact, in the core, 

B$ = zj,Jo = - W 

while, in the walls, 

(19) 

a2v a2v c(v+6) 
s+qF= a2 (20) 

and 

a2u azu 
x+jg=o. (21) 

A condition such as (16) is neither necessary nor 
available. The values of V, U, t,b and j, are fixed purely 
by 8’ at z = fa ; d on the walls parallel to B has no 
effect on the core; variations in d there affect only the 
boundary layers, via (10). Because $ is odd in z, fluid 
enters and leaves the layers on opposite sides of z = 0, 
where Q, is not zero so that return flow in the layers 

across z = 0 is possible. Q, is determined by (12) with G 
= 0. A simple case is that where d is such that Q, is zero 
everywhere and Q, is proportional to (a2 - z’). 

2.3. Current-free cases 

A first task is to establish whether the fluid can ever 
accelerate until all currents vanish (to the order of this 
calculation) because the v x B and Seebeck emf’s 
balance. Then the thickness and conductivity of the 
current-free walls become immaterial (provided C << 
Ml”) and V and U are uniform. G is uniform by (7) 
and so B$ + 6 = const. at the walls z = f a. d must 
be even in z as j, = 0. The streamlines and side-wall 
isotherms are identical. On the other walls d must be 
independent of s, by (16). There are high-speed boun- 
dary layers if d varies from its value at the rims for (18) 
here becomes 

BQ, = d - grim. (22) 

If drim is constant, Q, is constant, a$/& vanishes and 
the layer does not drain or feed the core flow. Q, occurs 
if B varies with s. If 8 varies with s, the problem belongs 
to the wider category, with core and wall currents, 
discussed below. 

Once there is current in the core and walls, a general 
treatment for arbitrary cross-sections in the x-y plane 
becomes cumbersome. Henceforth we therefore con- 
sider only the more symmetric configurations in order 
to reveal the physics without excessive mathematical 
complication. 

3. FULLY DEVELOPED FLOW IN A RECTANGULAR 

DUCT 

In the two-dimensional problem we take the walls 
parallel to B as x = f b (see Fig. 2). Currents circulate 
in x-z planes and the purely axial motion involves no 
exchange between core and layers. The neglect of 
inertia in the core is exact here. There may be net axial 
flow and/or a uniform axial pressure gradient dpjdy. 
As in [l] the solution consists of two superposable 
parts : 

1. thermoelectrically-driven motion in the absence 
of dpfdy, and 

2. isothermal flow due to the pressure gradient. 
Although the latter is a well-explored field, the case of 
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FIG. 2. Duct cross-section. 



thin, finitely conducting walls has not been fully kz c sinh I’.Y 
covered previously. Now j, depends only on .Y, while 

VY = __. ._ .-. __.. ~~~~_ 
B UC sinh ch +- cash ch 

(30) 

.j, -= - ~d~~d~)~~, constant. (23) whereas, if tL: = kx at z = a, 

3.1. The boundur~~ lugers on wul1.s purallel to B k(a t b)z (’ cash L’S 

In relation to these, it is convenient to treat the odd 
,‘y = ..~~~~~ 

cd3 UC cash ch G- sinh ch 
131) 

and even parts of the solution together. In the bottom 
wall (see Fig. 2) 

More generally, if 6 at z = u is expressed as a Fourier 
series in x, (27) is easily solved, but there are also simple 

d’U/d? = j&o,. (24) polynomial solutions for which 

If subscripts Land R refer to the corners indicated, (24) V + & = C~,X”-~ (in even) (32) 
integrates to 

provided that (5” (at z = (I) is the even function 
U = -+j,(u’ - ?)/tc,, + ((W, - 8~) (a + z) 

(5’ = c k&P 2 + C(b’” - P 
+ (II/, - 8&a - z):‘2a. 

t tnuh”’ - i ),??l(tn -- t )a”;~ (33) 
Q,,, which is J c) dn, is given by (10) as 

The case y11 = 2 is the only situation for which, with A 
BQ, = ;j,(u” - ?):tcr, odd in - + j, is constant and lli. is zero. It is referred to 

+ (8, - Ar,lz/Zu + f(&R + &L,) - R (25) 
again, below. 

because W at the bottom of the core is linear in z. The 3.3. d Eeen in z 

high values of v,, enable v x B emf’s to hold off both the When R is even, j, = 0 and W is independent of Z. 
Seebeck emf’s and the pd’s due to the spreading ofj, Conservation of current flow in walls and core across 
into the wall. Integrating (2.5) between z = ia gives planes x = constant determines the core velocity (a 
the total flow in the layer, namely function of x) as 

{2a’j,:3r~,~ + 2a[+(B, -I- R,,) - a-J/D. (26) I’, = ij,(C -I- l)/cr -t dJ;d.xl_/B, (34) 

At the top layer the sign of the thermoelectric term in exactly as for circular ducts El], i: being the value at 
(26) must be changed. According to the model used both side walls at the same s. 

here, the part due to pressure gradient becomes zero Setting the pressure gradient (and ,j,) to zero leaves 
when 6, --, I In a rectangular duct with perfectly only the current-free solution with v x B and Seebeck 
conducting walls [4], the velocities in the top and emf’s in balance. In this case, the total volumetric flow’ 

bottom layers are of the same order as the core velocity due only to thermoelectric effects. including both the 
and BQ, produces exactly as much emf as would the contribution of the boundary layers (26) and the 
uniform core velocity, i.e. just enough to drive j,, as integral of (34), is equal merely to 
there is no pd across the layer in this case. 

In relation to the core, it is convenient to treat odd 
2&,- - X,)/B. (35) 

and even parts separately. if subscripts T and B refer to the top and bottom walls 
respectively. Equation (35) involves neither the value 
of C nor the detailed distribution of 8’. NOT does any 

3.2. A’ Odd in z odd part of 0” contribute to the total flow rate. 
When 8 is odd, V is determined by (20) in the form In the isothermal case. pressure gradient alone 

I d”V 
produces a flow of 

c2 dz2 
- 1’ = 6 (c = (-‘Q/Q) (27) 1 ’ 

(C i- 1 )h -c j Ca i . 
i 

136) 

subject to the conditions 

which arise because U is linear in z by (21). The velocity If thermoelectrically-driven flow is blocked (e.g. by 

is given by remote ends), superposing (35) and (36) so as to give 
zero net flow determines the ‘standstill’ pressure 
gradient 

in which the two terms relate to the core and layers 
respectively and are of the same order unless u/b is very 
large or small or C is very small. 

dp &B(b, - 8,) 
using the values of V and R at z = a. A solution of (27) 

- 3 .II_-.-__ .~. 
dv 1 / 

(37) 

usually involves a hy~rbolic compIementary funo 
tion, which equals (V + d) in cases where B at z = u is 

(C+ I)b+$u 

linear in x (or constant). In fact, if d = ku (constant) at This case belongs to the class of closed-container - - 
z = u. then in the core problems, treated later. As in 111, the question arises as 
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to whether the fluid can ever be at rest euerywhere. For 
the core to be at rest, (34) indicates that & (or its even 
part) at 2 = a must obey 

d& (C + 1) dp -=- - 
0 dx crB dy 

(38) 

with dp/dy given by (37). If dhas an odd part it must be 
given by (33) with m = 2. For the local flow Q,, in each 
layer to be zero, as well, B, or b, must vary quadrati- 
cally with z so that (25) vanishes. Then the electrical 
and mechanical conditions at top and bottom of the 
core are directly compatible with the walls and no 
layers occur, i.e. the fluid is stationary everywhere. 
Then it is not even necessary for M to be large and the 
magnetic field can be in any direction. 8 varies 
quadratically along each wall so as suitably to cause 
redistribution of the uniform currents entering ob- 
liquely from the fluid. 

The case where the top and bottom walls are non- 
conducting [4] is very different. Then a pressure 
gradient drives velocities of order M in the layers near 
these walls and produces a flow rate oforder M’12. As a 
result, blocking the ends of such a duct when the side 
walls are thermoel~tri~lly active produces a neglig- 
ible [i.e. O(M-“*)I change in the core flow as com- 
pared with the free flow without pressure gradient 
because the boundary layers provide such an easy 
return path for fluid where j, and the j x B force 
necessarily fall to zero. Some indication of how 
conditions are modified near plane ends on a rec- 
tangular duct is given in Section 5, which examines a 
cubical closed container. 

4. CYLINDRICAL CONTAINERS 

We turn next to the case where the wall parallel to 
the field is the cylinder I = b, in terms of polar 
coordinates (r,(3) in x, y planes. This case should be 
distinguished from that of the circular pipe with plane 
ends [3], where the field is normal, not parallel, to the 
axis. The distributions of temperature and d need not 
be symmetric about the z-axis and so this case should 
be reasonably representative of the physical behaviour 
that occurs with arbitrary smooth cross-sections in x, y 
planes. 

It is fruitful to split 8 and the related solutions of this 
linear problem into Fourier harmonics with respect to 
8, which may be superposed. We therefore take 

(V, G, U, rl/, 8) = (v’, G’, U’, $‘, &)cos n13 

referred to a suitable &datum for each harmonic, 
where n is an integer or zero and B’ etc. are functions of 
z and/or r, as appropriate, and are finite whenever I = 
0. We consider the solutions for d even and odd in z 
separately. 

4.1. I Even in z 

- cash (nz/b)/cosh @a/b)), (46) 

but Q, is zero everywhere only for the n = 0 harmonic 
or ifQ, = 0. 

The axisymmetric part of the core solution (the n = The case n = 1 deserves some attention. The core 
0 harmonic) belongs to the current-free class, with current is rectilinear, uniform and normal to B. Even 
8. =a + BI,!J = const., i.e. pure swirl, independent of z. B though j x B is irrotational there can be fluid motion. 

proportional to r2 gives solid-body rotation, while I 
uniform at z = +a leaves the core at rest. The purely 
swirling (Q, = 0) layer on the curved walls is a high- 
speed closed circulation, not involving the core, but Q, 
= 0 (to the order of this calculation) if d on the curved 
walls is independent of z, U being zero here. 

If n # 0 the situation is more interesting. V and G are 
both Laplacian and we may take V’ and G’ as A(r/b)” 
and &r/b)” respectively. Then (11) indicates that at the 
rim z = a 

bdU 
- = -nu, 

dz 

while (14) gives 

d2U’ nzU’ nCD ---=_- 
dzz b2 ab 

(40) 

from which 

U’ = E cosh(nz/b)/cosh(najb) - CDb/na. (41) 

This satisfies (39) and (11) if 

D==En(l+ T)/C’ and A= -ET (42) 

in which c’ denotes bc/ta, and T = tanh (na/b). 
Equation (16) then fixes E as 

E: = g/((l + n/@)fl + T) - bT/na), (43) 

where B’ is the mean value of& with respect to z on the 
curved walls, which suffices to determine the U, V and 
current distributions. However the distribution of& on 
the walls z = +a affects the motion via (17) which 
gives 

BI,V = E[n/C’ f T(l + n/C’)](r/b)” - 8’. (44) 

It is possible for the flow not to enter or leave the 
boundary layer even when n # 0. This requires $’ = 0 
when r = b, and 

4im n/C’ + (1 + n/C’) T 
-= 
F (1 + n./@)(l + 7’) - bT/na’ 

(45) 

For the fluid to be at rest throughout the core we also 
need V2& = 0, i.e. b’ KS at z = 4 a. If instead &ii,,, = d 
(as for instance when &’ is independent of z on the 
curved walls) then B&, = (bT/na - l)E, which 
cannot be zero, and core flow must enter and leave the 
layer, as it does also when b’ = 0 and Bt+V = - 6’ (the 
current-free case). 

The high-speed flow in the layer is given by (18) and 
(12). Q, can be made zero everywhere by a suitable 
choice of I’ on the curved walls, namely 

Q’ = E((l + n/c’)(l + T) 



A simple example is that where B = kx on ull walls, the 

current flows in the x-direction and the core moves 
with uniform velocity 

t’ = _ (.VB)(l - bT!u) 
’ (1 + l,‘C’)(l + T) - bT,‘u 

(T = tanh u/h), (47) 

out of and into the boundary layer. MeanwhiIe the 
flow in the layer is given by 

BQ, = EcosU 

and BQ, = E sin @ 
i 

sinh (z/b) 
-- 
cash @r/b) 

in which E = kb/((l + i/C’) (1 + 7’) - bT/u). Fiuid 
that moves straight across the core returns in the layer 
on a curved path that takes it nearer to the plane z = 0. 
There is a big difference from the case of a sphere [2] 
with 6 = kx, for which no motion occurs. The 
thermoelectric ‘pumping’ tendency of the .x-wise 8- 
gradient is wholly blocked by the walls in the sphere, 
but only partially so in the cylinder, in which the fluid 
velocity reaches a value less than k/B, the velocity at 
which v x B and Seebeck emf’s would balance. This 
velocity would be reached if 8 = kx on the side walls 
but 8 = 0 on the curved walls. lf instead d = kx on the 
side walls but (45) is satisfied by d on the curved walls, 
there is no core motion. 

4.2. d Odd in z 
From (21) U’ is proportional to sinh nz/b and (11) 

leads to the condition at r = h: 

1/’ + 5: ‘g- = 0 or V’ + 5:; = 0 (n = 0). (49) 

Equation (20) becomes 

The curved wall is a core streamline only if n = 0 or V’ 
+ 6’ = 0 at the rim ; otherwise the core flow enters and 
leaves the layers. Equations (49) and (SO) show that V 
and hence W and $ are determined purely by 8’ at the 
walls z = *a. 8 on the curved walls affects only the 
layers there. R’ at z = a may be expanded as a Fourier 
series of J, terms and solutions readily deduced in 
terms of J, and I,. However, some simpler solutions 
exist. 

The anaIogue of (33) is that where, at z = CL, 

8’ = ~{~2(& - ,12)lm-2 - erm 

+ Cr”b”-“(1 + m7’/n)/(l + T)i (51) 

for which, in the core 

-S$ = W = A(nz2 - n2)uzrm-’ cos no. (52) 

To avoid singular z-wise vorticity at r = 0 requires m 
2 4 unless m = n + 2. Taking m = n is nugatory. The 

axisymmetric case (n = 0) corresponds either to a core 
with swirl proportional to z(m 3 41 or to a stationary 
core (ni -= 2), the only &odd situation in which I& is 
independent of r and (I andj, is uniform. Tf n -= 0 and it? 
= 4 there is uniform angular velocity at each :. Fhe 
case n == 1. 1~ = 3 is interesting, for then 

and the core motion is purely in the _r-direction, 
another rectilinear motion into and out of the boun- 
dary layer. If & on the curved walls is such that Q, = 0 
the complete streamlines are all rectangular in planes x 
= const. 

Whenever IT2g = U at L = 2~1 (i.e. rS = ,&“I the 
solution is a relatively simple analogue of (301 and (3 1 J, 
with W proportional merely to zf,(cr). In the axisym- 
metric case (n = 0) where 6 is constant on each wall I 
= +lL 

C: being here the value at z = (I. Nowjz increases with I 
like I, and the swirl velocity is proportional to I,. This 
case includes the case where & = kz on crll walls, which 
shouId becontrasted with the same case for a spherical 
container [2], where no motion occurs. Taking n == 1. 
R = As at z = (I, leads to 

- &/j = 
(z/h)Ab(l + T)f,(~~r)ccx 0 

w z -.-..-.... _I_ _~ __~__... .._ L 
(1 - T)l,(cb) + chTf,,(ch) 

(‘I’ = tanh(u:h)). (54) 

Again there is motion across the core, into and cut of 
the layers, but it is not now rectilinear. There is %i 
considerable difference from the equivalent sphericai 
case [2] with 6 = Axz/a, say, in which there is solid 
body rotation about the x axis. In the cylinder, if 6 on 
the curved walls is such that Q, = 0, the motion still 
consists of deformed circulation loops centred on the .Y 
axis, however. 

As regards the boundary layers, when n = 0 there is 
no high speed flow if 1 on the curved wall is 
proportional to z, like U and W. When !I # 0. Q, = 0 
only if & on the curved walls is such that 

Departures oft” from (55) lead merely to extra fluid 
circulations in the boundary layers which do not upset 
the core. 

5. RECTANGULAR PARALLELEPIPEII CONTAINERS 

To provide insight into any extra characteristics of 
TEMHD that arise when the container has sharp 
edges parallel to the field, we consider the case of a 
cube ofside 2~. As convenient analytic solutions do not 
appear to be available, the cube is chosen because its 
many symmetries greatly facilitate a numerical treat- 
ment by the relaxation method. Figure 3(a) shows the 
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FIG. 3. (a) TEMHD in a cubical container. (b) Relaxation 
star. 

axes chosen and the domains over which the equations 

are to be solved. The cases treated here are those where 
tp at all walls is linear in either z or in x and/or y, but the 
method could easily be extended. A square mesh of 
points with a step-size h equal to a/m, where m is a 
power of 2, is employed, 

5.1. 8 Odd in z 
Provided Cw also has symmetry in the planes OBFG 

and OBCD, it is necessary only to solve for V, $ over 
the triangle BCF and for U, Q,, Q, over the square 
CDGF. The case solved here is that where 8 = kz at all 
walls and U and V are treated as one variable V, 
obeying different differential equations in different 
places. In terms of the relaxation star of points shown 
in Fig. 3(b), the improved value of V at the centre is 
given from (20) and (21) by 

CV - aka 
v, = 

4+x ’ 

inwhichXVequals(V + V2 + V, + V,)andcr = Oin 
CDGF, C(&~Z)~ within BCF and &Y(h/ufz along CF. 
The latter is arrived at by first treating 1 as an 
extrapolated dummy at the rim of CDGF or 3 as such 
at the rim of BCF and then satisfying (11) by making 
V, - V, equal in the two cases. An alternative 
approach equating normal V gradients using a para- 
bolic approximation based on points 6,3,0 and O,l,S is 
found to give indistinguishable results and to be 
somewhat slower. An extension of the dummy concept, 
using the symmetries, leads to 

v, = 
2V4+V,-crka 

3-t-M 
(57) 

with CL = 1/4C(h/a)’ at the corner C. Relaxations along 
BC, CD and GFB involve the symmetry about these 
lines, and V is kept zero along GD. An over-relaxation 
factor of 1.6 or 1.7 is convenient, and the step-size is 

D ..I 
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FIG. 4. Cubical container with 8 = kz, C = 1.0: (a) 
Distribution of U and V in the walls (‘flattened’). Contours 
are labelled with values of (U or V)/ka. Wall current is normal 
to these. (b) Fluid motion: core streamlines shown within 
BICF are labelled with values of B$/kz. The associated 
boundary layer flow vectors within CDGF have components 

proportional to Qz and Q, 

halved progressively until m = 32, relaxation finally 
being to within a tolerance of 10T6. Values in the 
triangle BCI follow from symmetry, and - W and B$ 
follow from - (V + b)z/a. Qx( = -Q,) and Q, are 
found from (10) and (12) with G = 0. 

Figure 4 shows the results for the case C = 1.0, 
drawn with GHOST routines. The right side of Fig. 
4(b) shows that, although most ofthe core motion is an 
unimpeded vortex motion about the z-axis, the outer 
core streamlines hit the wall and the flow returns in the 
boundary layer in the complicated way shown by the 
left side of the figure. The return flow is mostly across 
the plane z = 0, followed by motion backwards in the 
core at negative z, but some flow in the layer carries on 
to negative x, while some circulates backwards via the 
edge CD. How happily a high speed boundary layer 
goes round the right angle bend at CD is a matter that 
deserves experimental scrutiny. To show the influence 
of C some salient values of V, 1c, and Q are given in 
Table 1, Q being (Qz + Qz)““, and + being zero at B. 

The main effect of raising C is a strengthening of the 
flow in both core and boundary layer as the potential 
drops in the walls z = &a become more important. 
When C = 0 (perfectly conducting walls) B3/ + I = 
const at z = a, and so there is no motion in this case, 
where d is constant at z = 4-a. 

The comparison with the other solved cases where & 
= kz is instructive. In a sphere [2] or a long, blocked, 
circular duct [l] there are no boundary layer effects 
and no motion. In the cube the y-wise core motion 



across the centre plane _r = 0 (ORIJ) is not unlike the 

corresponding motion described by (30) in a long 

square duct, but the weak boundary layer motion 

across IJ (compare GF) in the cube has no parallel in 

the duct, for which Q, = 0 if A = k;, by (25). The cube 
case gives some indication as to how the rectilinear 

flow in a long duct would be bent round near and by 
flat conducting end walls. This turning round would 

occupy a length of order (I, not of order ti,:M’ ‘. as 

might have been expected. In the circular cylinder. 

coaxial with the magnetic field. the core motion across 

the plane 4’ = 0, determined by (53) when f: -7~ kz. with 

cy proportional to zI1(~~.x). is very similar to the cube 

and duct cases, and there is no high speed boundary 

layer here, just as in the duct. The biggest contrast 
occurs with the case of the Rat-ended cylinder 137 with 

its axis in the y-direction, normal to the magnetic field 

for which there are no high speed boundary layers and 
there is swirl about the I.-axis instead. This is possible 
because now I’, is not zero. The core motion across the 

plane x = 0 (OBFG) is remarkably similar in the cube 

and the two cylinder cases, however. 

5.2. & Even in z 
Provided 8 also has symmetry in the plane OBCD 

and antisymmetry in the plane OBAE it is necessary 

only to solve for V, G, I& over the triangle ABC and for 

U, Q,, Q, over the rectangle ACDE. The case solved 
first is that where cf-‘ = ik(x i- r) on all walls, and V 

(which again includes U) is found by relaxation 

according to the formulae 

I’, = ;(CV - r), Go = dXG. 1%) 

with LX = I) within ABC by (131, r = 
(Ch2,/u)(?G/$r),im within ACDE by (14) or half this 

value along AC, by arguments similar to those used in 

Section 5.1. At the corner C the formula becomes 

v, = +(2V4 + V, - (:Ch’:‘cl)(?Gi%),imj. (59) 

The gradients of G are found from 3 adjacent points by 
a parabolic approximation. The boundary conditions 

express the symmetry of V about BC, CD and DE, the 
symmetry of G about BC. the values V = G = 0 along 

BAE and the value 

G = c + $k(r -+ ii) (60) 

along AC. from (lb). The method involves iterative 
relaxations between G and V (or U ), u derived by 
Simpson’s rule being fed back into the G boundary 
condition (60) and the G-gradients being fed back into 
the V-relations (58) and (59). Reasonably stable con- 
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vergence is achieved by complete relaxation and feed- 
back on each line of points (I- constant) before 

moving to a new line, and then repeating over the 

whole domain until relaxation ceases to be necessary 
within a certain tolerance, progressively lowering this 

to lo-’ when rn is raised finally to 32. There is still 

much scope for improving the numerical method. 

however. To show core current in I - j’ planes a 
stream function N equal 10 _f(iG:?r)dx. is in- 

troduced, taking H = If along BC, while the core how 

is revealed by B$, found from ( 17), and the boundary 
layer flows Q, (i.e. -Q,) and Qz are found from (8) and 

(12) in the forms 

The values in the triangles BCI and ABH are found 
by reflections. 

Solutions for the case A = 1;.~.. regarded as the 

su~rpos~tion of the case above and the comparable 

case 8 = $k(x - r) are readily computed, and the 

results presented in Fig. 5 refer to this case, for c’ = 1 .O. 

Figure S(c) shows how the how across the centre-plane 

OBIJ and the equal returning boundary layer flow 

across Jl, also characteristic of the long blocked 
re~tanguiar duct (see Section 3.3) exchange huid at and 

near the end wall CDGF. Most of the flow bends and 
hits the top wall CDJI and turns sharply back in the 

fast layer there, rather than proceeding to the end itself 

w)here the boundary layel is much slower. In the layers 

i 
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FIG. 5. Cubical container with I = kx, C = 1.0: (a) 
Distribution of U and V in the walls (‘flattened’). CI appears 
twice. Contours are labelled with values of (V or V)/ka. Wall 
current is normal to these. (b) Core current: current lines are 
labelled with values of H/ka. (c) Fluid motion : core stream- 
lines shown within BICF are labelled with values of B$/ka 
The associated boundary layer flow vectors are shown to a 
uniform scale within GFIJ (Wattened’). CI appears twice. 

the fluid returns somewhat closer to the plane z = 0 
than in the core, because t,k in the core is independent of 

z but Q, in the layers is greatest at z = 0. The 
maximum boundary layer flow is at J. The fast flow in 
the layer round the corner CD is now oblique. To show 
the influence of C some salient values of V, tj and Q are 
given in Table 2. Again larger values of C imply 
stronger motions in the core and layer. When C = 0 
(perfectly conducting walls) there is no motion but a 
uniform core current. 

A comparison of the various solved cases for which 
8 = kx is worthwhile. In a sphere [2] or long blocked 

005 0.1 02 0.5 I.0 2.0 5 0 10 20 
C 

FIG. 6. 8 = kx cases. Core velocity at various C. Curve (a): 
long blocked square duct (Boy = k/(4 + 3/C)). Curve (b): 
cylinder coaxial with B (case a = b) (Buy = k/(4.2 + 7.4/C)). 
Curve (c) : cube (average velocity across plane y = 0). Point 
(d): cylinder with axis in x-direction (case where semi- 
length/radius = n/2) (average velocity across plane y = 0). 

circular duct [l] there are no boundary layer effects 
and no motion. In all the other cases where there are 
walls parallel to the field at or near the top and bottom 
(high and low x) there is uniform (or nearly uniform) y- 
wise motion in the core across the centre-plane y = 0, 
and a return flow in layers at the top and bottom. 
These cases include the cube, the blocked retangular 
duct, the flat-ended, circular cylinder coaxial with the 
field B and the cylinder with its axis in the x-direction 
[3]. The misfit is the cylinder with its axis in the y- 
direction [3], where the core flow includes a weak 
closed circulation and the high-speed boundary layers 
can occur only on walls y = constant, feeding only the 
core close by. For the other cases, Fig. 6 makes a 
comparison of the y-wise velocities deduced from 
Section 3.3, equation (47), Table 2 and reference [3], as 
C varies. The progression is in line with physical 
expectation. 

The cube case 8 = )k(x + y) has some interesting 
features. As Fig. 7 shows, the motion is surprisingly 
complicated, for all the values of C tested. Although 
most of the core flow travels in the general direction 
BA, returning past the corner CD, some of it shortcir- 
cuits the corner via the core, above the stagnation 
region X, while some fluid circulates up and down at 
and near the wall (see B$/ka = -0.05). 

6. CONCLUDING REMARKS 

This paper’s main aim has been to show how 
profoundly TEMHD motions are changed when there 
are extended areas of wall parallel to the magnetic 

Table 2. 

- V/ka - V/ka - Vlka Vfka - - B$/ka - B$fka 
C at D at J at C at I at C at I BQ,,Jka 

0.2 0.09447 0.14042 0.07737 0.09294 0.01080 0.03221 0.04748 
1.0 0.33745 0.47432 0.27545 0.31649 0.03940 0.10689 0.15784 
5.0 0.71126 0.88286 0.57476 0.59776 0.08830 0.19245 0.28510 
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F!c;. 7. Cubical container with R = $k(x + ~1, C == l.it. Fluid 
motion. Core streamlines shown within AHIC are labelled 
with values of &&a. The associated boundary layer flow 
vectors are shown to a uniform scale within ACDE. BQ,,x:ku 

= 0.08043 at z = 0, x.‘a = 0.25. 

field. The high speed flows which often occur near 

these walls could have severe effects on the heat 

transfer needed to sustain a given interfacial tempera- 

ture distribution, or on the temperature distribution 
for a given array of external or internal heat sinks or 

sources (such as heat release by neutron bombard- 
ment]. The paper has shown ho%. for a variety of 

geometries, the MHD aspect of the problem can be 

mastered (granted the conditions that allow the in- 

viscid. inertia-free model to be used) thereby opening 

the way to attacking problems where the heat cm- 

vection has to be calculated. These are much more 

challenging,especialiy where the interface temperature 

is not known uh initio, but is determined by the heat 

convection. or when, in view of thermal lags and nnn- 

linearity of the convection process, it is not even 
certain that the combined heal and Ruid Row will be 

steady rather than oscillatory. One particular difficulty 
ia that the odd or even solutions may intermingle when 
heat convection is introduced. 
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MHD THERMOELECTRIQUE AVEC DES PAROIS PARALLELES 
AU CHAMP MAGNETIQUE 

Rksmni-Un metal liquide entre des parois m~talliques sous un champ magnitique est bras& thermoklectri- 
quement si la tempkrature interfaciale n’est pas uniforme. Quand ii y a des zones J’interface parailkle au 
champ magnitique uniforme, apparaissent des couches iimites rapides qui ichangent du fluide avec la rigion 
centrale. En dehors de ces couches limites, la viscositt5 et I’inertie peuvent gtre ntgligkes si le champ 
magnktique est intense. On considere les mouvements dans des longues conduites de section rectangulaire, 
des cylindres ferm&s coaxiaux avec le champ et des conteneurs cubiques. Lorsque la temptrature interfaciale 

est suppoke connue ah initio, les effets intenses de la convection thermique ne sont pas explork 

THERMO~LEKTR~SCH~ ~AGNETOHYDR~~YNAMIK BE1 ZUM MAGNETISCHEN 
FELD PARALLELEN WiiNDEN 

Zusammenfassung-Fliissiges Metall wird zwischen metallischen Winden unter dem EmfluB eines 
maenetischen Feldes thermoelektrisch geriihrt, wenn die GrenzflPchentemperatur nicht gleichfijrmig ist. 
We;n Grenzfliichen parallel zum magietischen Feld vorhanden sind, treten Grenzschichten mit hoher 
Geschwindigkeit auf, die Fliissigkeit mit der zentralen Region austauschen. AuDerhaib dieser Grenzschich- 
ten kijnnen Zlhigkeit und Trlgheit vernachlhsigt werden, wenn das magnetische Feld stark ist. Bewegungen 
in langen KanElen mit rechteckigem Querschnitt, geschlossenen Zylindern, die koaxial zum Feld orientiert 
sind, und kubischen BehIltern werden untersucht. Da angenommen wird, daR die GrenzflLhentemperatur 
von Anfang an bekannt ist, wird der starke EinfluR der konvektiven Wirmeiibertragung nicht untersucht. 

TEPMO~~EKTPH~ECKA~ MArH~TO~~~PO~~HAM~KA flPH HA~O~~~~~ 
MArH~T~O~O nOJIB nAPA~~E~bH~ CTEHKAM 

AtmoTarmn --- Xu&~~aii h.wrwin B o&ewe. OI-~~HKWHI~OM MeraJmHqecKHMIi CTenxaMn, K KOrOpbIM 
npwroxeao MarmiTIfoe none, nepeMemeBaeTcs nOA AeficTBseM TepMosneKTpArecKux cUJI. ec;IA TeM- 

neparypa Ha rpamme pasnena +a3 HeOAHOpOAHa. Koraa rpaewa palnena napa_TnenbNa IIOCTORH- 

HOMy MaTnllTHOMy nOnK), BOSWHKBK)T nOrpaHH‘4HbIe CnOR. cnoco6c-rsymw;lre MaCCOO6MeHy c UeIi- 

TpaXbHOii 06JIaCTbH,.~pHCKnbHOMMarHRTHOMnOAe BRSKOCTb~0 S%HepIIHefi 3anpeAenaMn3THXcnoeB 

MoxHo npeHe6pVIb. klCC,IeAoBaHWI IIpOBOAEWIHCb B yAAHHeHHbIX KaHaJIaX IIpaMOyrOAbHOrO CWeHUII. 

3aMKHyTbIX *~-pax c COOCH~ ~a~paanenn~~ nonebi n ~y6nq~K~x pe3epsyapax. Bstlxy Tofo, 9ro 
TehmepaTypa rpaminbr pa3irena c9ziTaeTcs aen~iqatroii a38ecTnoii. BJIRS1HHe TenJIOBOii KOH5eXnflll Ha 

Maccoo6MeH He accnenosanocb. 


