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Abstract—Liquid metal within metal walls under a magnetic field is stirred thermoelectrically if the

interfacial temperature is non-uniform. When there are areas of interface parallel to the uniform magnetic

field, fast boundary layers occur, exchanging fluid with the central region. Outside these layers, viscosity and

inertia may be neglected if the magnetic field is strong. Motions in long ducts of rectangular cross-section,

closed cylinders coaxial with the field, and cubical containers are investigated. As the interface temperature is
assumed to be known ab initio, the strong effects of heat convection are not explored.

NOMENCLATURE

®

magnetic field;

aosjte,, C' = bofto,,;

Seebeck emf;

W + By;

current stream function ;

, Ba(c/n)'?, Hartmann number ;

0,0, 0,.0,, components of boundary layer flow
integral;

S(S.,), absolute thermoelectric power of fluid

(wall);

tan h(na/b) (or temperature);

pseudo-potential in wall parallel to B;

pseudo-potential in wall normal to B;

pseudo-potential in fluid;

semiwidth of duct or container;

cylinder radius or duct height;

ct /2 / a;

mesh step size;

current intensity;

i current intensity in planes z = const.;

m, number of mesh steps;

n, normal distance (see Fig. 1);

p, fluid pressure;

s, tangential distance (see Fig. 1);

L, wall thickness;

v,0, velocity.
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Greek symbols

o(o,), electrical conductivity of fluid (wall),
assumed constant;

1, viscosity ;

v, stream function.

1. INTRODUCTION

UNDER an imposed magnetic field, thermoelectric
currents cause stirring of a liquid metal in a metal
container when the interface temperature is non-
uniform. Such a phenomenon could have relevance to
controlled fusion or metallurgical technology. For
instance, for liquid lithium cells in the blanket of a
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magnetically-confined fusion reactor, heated by neut-
rons and cooled by helium circulation, temperature
distributions calculated on the assumption of static
fluid could be grossly in error because of the stirring
(lithium has unusually high thermoelectric power).
Similarly, the possibility of achieving desirable stirring
during the solidification of melts in metallurgy is
worthy of investigation.

This paper extends earlier studies [1-3], of which
[1] discussed the size of the effect in practice and
analysed motions in long circular ducts, whereas [2]
and [3] examined TEMHD in closed containers. [1]
and [2] specifically excluded cases where finite por-
tions of the interface are parallel to the magnetic field
but [3] considered circular pipes of finite length closed
by plane ends parallel to the field. This paper explores
other problems where some walls are parallel to the
field, the other two walls being plane and normal to the
uniform imposed magnetic field. The problems are
specified in terms of known distributions of tempera-
ture and hence of Seebeck emf over the wall-fluid
interface; at this early stage in the subject there is quite
enough complication without having to explore the
perturbation of the heat supply necessary to maintain
these temperatures in the face of the convection which
ensues when the magnetic field is applied. The effect
can be quite severe because significant Peclét numbers
can occur [2].

In practice, any magnetic field due to the currents is
negligible and inertia forces are usually insignificant in
comparison with magnetic forces. Each problem is
then linear and appropriate solutions may be con-
veniently superposed. As the Hartmann number M is
large, there are boundary layers on walls parallel to the
field of thickness O(M ~!/2) (if laminar) and Hartmann
layers of thickness O(M ~!) on the other walls, while the
core flow elsewhere is inviscid. The importance of wall
impedance is measured by the parameter C and is
small compared with boundary-layer impedance be-
cause C is normally small compared with M and M!/2,
Then the Hartmann layers are entirely negligible but
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the fluid in the layers parallel to the field may travel so
fast that they can carry significant flow and ‘hold off”
significant potential drops by electromagnetic in-
duction, as [3] showed. It is possible to proceed
without solving for their structure in detail and so it is
not necessary to neglect inertia in those layers (which
might even be turbulent) provided they are still thin. In
the container problems solved here the flow passes
between the core and the high-speed layers.

We take the walls to be thin (1 « @)in order to treat
wall current flow as quasi-two-dimensional and to
ignore the fine structure of current flow round corners
in the walls. We take the z-axis in the direction of the
magnetic field and the y-axis axial in duct flow
problems, The plane walls normal to the field are at =
= 4gq,as in Fig. 1.

In view of the dependency of the heat convection on
the vigour of the stirring process, some attention is
given to those extreme cases in which either thereis no
motion or there is ‘free” motion, where the fluid can
accelerate until v x B and Seebeck emf’s balance and
currents cease.

2. GOVERNING EQUATIONS

In the inviscid, inertia-free core, the j x B force
balances the pressure gradient and is therefore irro-
tational, so that j is independent of z and

divj =0, {1}

i being the current intensity in planes z = const.
Ohm’s law in TEMHD is

jjo=vxB—grad W 2

in which

W = electric potential + ( SdrT, (3)
JTo
T, being a datum temperature. We replace W by ¥ or
U respectively in walls normal or parallel to B. At the
interface

W=V (or U)+ &, 4)

where the Seebeck emf & = §,, (S — §,,)d T, a function
of the interface temperature. At the high-speed layers,
W in {4) must be taken at the wall proper, not the edge

Fii. 1. TEMHD container.
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of the core. The curl of (2) in the fluid makes v linear in z
if we take the fluid as incompressible, with

divv =10 (5

As the Hartmann layers are thin and move at siow
speed, v, vanishes at the walls z = +a and, being
linear in z, vanishes throughout the core. From (5) we
may then set

v, = 0p/0y and v, = ~{3Y/0x 6}

and (2) allows us to take G = W + By as independent
of z, with
j=—ograd G in
and

VG =0, %)

in view of {1). At the walls parallel to B, the high
impedance layers have negligible effect on the normal
component of §', which may be taken as equal to the
value at the edge of the core.

Although in the core #, = Q, this is not true in
general in the layers parallel to B, across which we
define two flow integrals

Q,= fv,dn and Q, = jr,dn 9

Neglect of the current term in integrating (4) leads to
the condition

BQ,=U+6 ~W (10)

in which W is the value at the edge of the core.
Fquation (10} expresses the ‘holding off* of p.d. by the
high-speed layer. Q, vanishes at the rims where & is
assumed continuous and where we have the further
conditions

V=U and 0U/8z = +0V/dn (as appropriate).

(i1

(For simplicity we take all walls as having the same
thickness and conductivity.) Fluid conservation at the
layers requires that

A ) 0. A
(Q_S + GQJ _é“l’ or Bﬁ’g;‘: Cw((; - U~—-& (12)

as iz ds éz s

by virtue of (10}. @, also vanishes at the rims, for the
Hartmann layers cannot accommodate significant
flows. Equation (12) may therefore be integrated from
z = —a,say, to yield Q..

In view of the symmetry in the plane z = 0, it is
convenient to follow [2] and [3] in considering
solutions for & odd or even with respect to z separately
and then superposing them, as necessary.

2.1. & Even in z

For the case where & is even, [2] showed that in the
core j, = 0 while W, G and  are independent of z. In
the walls

i T
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Thermoelectric MHD with walls parallel to the magnetic field

and
U U C G
St == . (14)
0s oz a on
By (8) and (13), the core vorticity is given by
~V2y = V2&/B, (15)

& being the value at the faces z = +a. The vanishing of
the vorticity does not preclude motion as all stream-
lines may enter and leave the boundary layers. As j,
and v, vanish, half of these &-even solutions (e.g. for z
> 0) may be taken to represent a system having one
plane wall normal to the magnetic field non-
conducting (or a horizontal free surface taken to be
virtually plane)at z = 0. Here Q, is odd in z and zero at
z = 0 also. Integrating (12) from z = 0 to a and also
with respect to s gives a boundary condition for G,
namely

U + & = G,;,, + constant, (16)

in which U and & are mean values with respect to z in
or at the walls parallel to B. We see that G, V, U and the
wall and core currents depend only on &, and not on
the detail distribution of &, but the core motion also
depends on & on the walls normal to B according to the
equation

By=G-V-¢. (17)

Q, is determined purely by & on the walls parallel to B,
by the relation

BQs =U+&~- Urim - éprim’ (18)

which shows that Q, can be made zero everywhere by a
suitable choice of & on the walls parallel to B. Then Q,
= Qalso and i,;,, = const, as the core flow cannot feed
the layers.

22. £0ddinz

For the case where & is odd, [2] showed that in the
core the only current component is j, which is
independent of z, but W, y, v,, v, are proportional to z.
In fact, in the core,

By = zjjo = —W (19)
while, in the walls,
2 2
%x—l: + (;TI: = ———C(Vaj %) (20)
and
62_U iz—g =0. 21
Os? dz?

A condition such as (16) is neither necessary nor
available. The values of V, U, ¥ and j, are fixed purely
by & at z = +a; & on the walls parallel to B has no
effect on the core; variations in & there affect only the
boundary layers, via (10). Because y is odd in z, fluid
enters and leaves the layers on opposite sides of z = 0,
where Q, is not zero so that return flow in the layers
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across z = Ois possible. Q, is determined by (12) with G
= 0. A simple case is that where & is such that Q_is zero
everywhere and Q, is proportional to (a*> — z2).

2.3. Current-free cases

A first task is to establish whether the fluid can ever
accelerate until all currents vanish (to the order of this
calculation) because the v x B and Seebeck emf’s
balance. Then the thickness and conductivity of the
current-free walls become immaterial (provided C «
M2y and V and U are uniform. G is uniform by (7)
and so By + & = const. at the walls z = +a. & must
be even in z as j, = 0. The streamlines and side-wall
isotherms are identical. On the other walls & must be
independent of s, by (16). There are high-speed boun-
dary layers if & varies from its value at the rims for (18)
here becomes

BQs =& - grim' (22)

If &, is constant, §, is constant, dy/ds vanishes and
the layer does not drain or feed the core flow. @, occurs
if & varies with s. If & varies with s, the problem belongs
to the wider category, with core and wall currents,
discussed below.

Once there is current in the core and walls, a general
treatment for arbitrary cross-sections in the x-y plane
becomes cumbersome. Henceforth we therefore con-
sider only the more symmetric configurations in order
to reveal the physics without excessive mathematical
complication.

3. FULLY DEVELOPED FLOW IN A RECTANGULAR
DUCT

In the two-dimensional problem we take the walls
parallel to B as x = + b (see Fig. 2). Currents circulate
in x~z planes and the purely axial motion involves no
exchange between core and layers. The neglect of
inertia in the core is exact here. There may be net axial
flow and/or a uniform axial pressure gradient dp/dy.
As in [1] the solution consists of two superposable
parts:

1. thermoelectrically-driven motion in the absence

of dp/dy, and

2. isothermal flow due to the pressure gradient.

Although the latter is a well-explored field, the case of

TOP
T X B
b —t>
) z
b a _’f‘— a—>
Ly R
BOTTOM

F1G. 2. Duct cross-section.



thin, finitely conducting walls has not been fully
covered previously. Now j, depends only on x, while

j. = —{dp/dyV/B, constant. 23)
3.1. The boundary layers on walls parallel to B

In relation to these, it is convenient to treat the odd
and even parts of the solution together. In the bottom
wall (see Fig. 2}

d*U/dz? = j jto,,. (24)

If subscripts L and R refer to the corners indicated, (24)
integrates to

U= —bjla® = 216, + {(Wg = &) (a + 2)
+ (W, — & Na —z)j/2a
Q,, which is | ¢, dn, is given by (10) as
BQ, = }jda* — 2M)ita,,
+(6p— 61)zi2a + HEp + €1 — & (25)

because W at the bottom of the core is linear in z. The
high values of v, enable v x B emf’s to hold off both the
Seebeck emf’s and the pd’s due to the spreading of j,
into the wall. Integrating (25) between z = +a gives
the total flow in the layer, namely

{2a% /30, + 2a[H&g + &) — &]Y/B. (26)

At the top layer the sign of the thermoelectric term in
{26) must be changed. According to the model used
here, the part due to pressure gradient becomes zero
when ¢, — . In a rectangular duct with perfectly
conducting walls [4], the velocities in the top and
bottom layers are of the same order as the core velocity
and BQ, produces exactly as much emf as would the
wniform core velocity, i.¢. just enough to drive j,, as
there is no pd across the layer in this case.

In relation to the core, it is convenient to treat odd
and even parts separately.

32.80ddinz
When & is odd, V is determined by (20) in the form

1 d*v o ,
subject to the conditions
v , 7
dr——:'ﬁ;%- atz=a, x=73B8B (28)
dx a

which arise because U is linear in z by (21). The velocity
is given by
z d

r — AV + &)

= .= 29
¥ Ba dx ()

using the values of ¥ and & at z = a. A solution of (27)
usually involves a hyperbolic complementary func-
tion, which equals (V + &)in cases where & atz = als
linear in x (or constant). In fact, if & = ka (constant) at
z = a, then in the core

1. A. SHERCLIFF

kz ¢sinh ex .
Ly = = e (30)
* B acsinhch + cosh cb
whereas, if & = kx atz = a,
k(a + b)z ¢ cosh ¢x 30
¥ aB ac cosh ¢b + sinh ¢cb o

More generally, if § at z = g is expressed as a Fourier
series in x, (27) is easily solved, but there are also simple
polynomial solutions for which

V+&=2Xk,x" 2 (meven) {32)
provided that & (at z = a) is the even function
& =Tk, x" %+ Clb" — x™
+ mab™ Fymim - el (33)

The case m = 2 is the only situation for which, with &
odd in z, j, is constant and v, is zero. It is referred to
again, below.

33. & Evenin z

When & is even, j, = 0 and W is independent of z.
Conservation of current flow in walls and core across
planes x = constant determines the core velocity (a
function of x) as

by = i jx((‘ + 1Yo + d(»%"/dx}/B, (34}

exactly as for circular ducts [1],  being the value at
both side walls at the same x.

Setting the pressure gradient (and j,) to zero leaves
only the current-free solution with v x B and Seebeck
emf{’s in balance. In this case, the total volumetric flow
due only to thermoelectric effects, including both the
contribution of the boundary layers (26) and the
integral of (34), is equal merely to

2a(&, — £5)/B. (35)

if subscripts T and B refer to the top and bottom walls
respectively. Equation (35) involves neither the value
of C nor the detailed distribution of &. Nor does any
odd part of & contribute to the total flow rate.

In the isothermal case, pressure gradient alone
produces a flow of

g (— fifi)((c b+ i—Ca L 6e

B . dy

in which the two terms relate to the core and layers
respectively and are of the same order unless a/b is very
large or small or C is very small
If thermoelectrically-driven flow is biocked (e.g. by
remote ends), superposing (35) and (36} so as to give
zero net flow determines the ‘standstll’ pressure
gradient
dp $6B(&r — &)

(37)

dy {
Yo+ Db+ Ca

This case belongs to the class of closed-container
problems, treated later. Asin [ 1], the question arises as
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to whether the fluid can ever be at rest everywhere. For
the core to be at rest, (34) indicates that & (or its even
part) at z = a must obey

d¢ _(C+1)(dp
dx oB \dy

with dp/dy given by (37). If &£ has an odd part it must be
given by (33) with m = 2. For the local flow @, in each
layer to be zero, as well, &5 or 7 must vary quadrati-
cally with z so that (25) vanishes. Then the electrical
and mechanical conditions at top and bottom of the
core are directly compatible with the walls and no
layers occur, ie. the fluid is stationary everywhere.
Then it is not even necessary for M to be large and the
magnetic field can be in any direction. & varies
quadratically along each wall so as suitably to cause
redistribution of the uniform currents entering ob-
liquely from the fluid.

The case where the top and bottom walls are non-
conducting [4] is very different. Then a pressure
gradient drives velocities of order M in the layers near
these walls and produces a flow rate of order M2, Asa
result, blocking the ends of such a duct when the side
walls are thermoelectrically active produces a neglig-
ible [ie. O(M~1%)] change in the core flow as com-
pared with the free flow without pressure gradient
because the boundary layers provide such an easy
return path for fluid where j, and the § x B force
necessarily fall to zero. Some indication of how
conditions are modified near plane ends on a rec-
tangular duct is given in Section 5, which examines a
cubical closed container.

(38)

4. CYLINDRICAL CONTAINERS

We turn next to the case where the wall parallel to
the field is the cylinder r = b, in terms of polar
coordinates (r,8) in x, y planes. This case should be
distinguished from that of the circular pipe with plane
ends [3], where the field is normal, not parallel, to the
axis. The distributions of temperature and & need not
be symmetric about the z-axis and so this case should
be reasonably representative of the physical behaviour
that occurs with arbitrary smooth cross-sections in x, y
planes.

It is fruitful to split & and the related solutions of this
linear problem into Fourier harmonics with respect to
8, which may be superposed. We therefore take

V.GU Y, & =V, G, U ¢, & cosnb

referred to a suitable #-datum for each harmonic,
where nis an integer or zero and &’ etc. are functions of
zand/or r, as appropriate, and are finite whenever r =
0. We consider the solutions for & even and odd in z
separately.

41 & Eveninz

The axisymmetric part of the core solution (the n =
0 harmonic) belongs to the current-free class, with
&,-, + By = const.,i.e. pureswirl,independent of z. &
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proportional to r? gives solid-body rotation, while &
uniform at z = +a leaves the core at rest. The purely
swirling (Q, = 0) layer on the curved walls is a high-
speed closed circulation, not involving the core, but Q,
= 0 (to the order of this calculation) if & on the curved
walls is independent of z, U being zero here.

Ifn # O the situation is more interesting. ¥ and G are
both Laplacian and we may take V' and G’ as A(r/b)"
and D(r/b)" respectively. Then (11} indicates that at the
rimz = a

b;lZU[ = —nU, (39
while (14) gives
2 2Er
from which
U’ = E cosh(nz/b)/cosh(na/b) — CDb/na. (41)
This satisfies (39) and (11) if
D=En(l+ T)C and A= —ET (42)

in which C' denotes bo/ts, and T = tanh (na/b).
Equation (16) then fixes E as

E=&/(1+n/CY1+ T)—bT/ma), {43)

where & is the mean value of & with respect to z on the
curved walls, which suffices to determine the U, V and
current distributions. However the distribution of € on
the walls z = +gq affects the motion via (17) which
gives

By’ = E[n/C’ + T(1 + n/C)](r/b)" — &'. (44)
It is possible for the flow not to enter or leave the

boundary layer even when n # 0. This requiresy’ = 0
when r = b, and

rim n/C' + (1 +n/C)T

F o UrnO)i+ T bl P

For the fluid to be at rest throughout the core we also
need V3¢ = 0,ie. & ocr"atz = +q. Ifinstead &}y, = &
{as for instance when & is independent of z on the
curved walls) then By, = (bT/na — 1)E, which
cannot be zero, and core flow must enter and leave the
layer, as it does also when & = O and By’ = — & (the
current-free case).

The high-speed flow in the layer is given by (18) and
(12). Q, can be made zero everywhere by a suitable
choice of & on the curved walls, namely

& = E(1 +n/c)(1 + T)

- cosh (nz/b)/cosh(na/b)), (46)

but @, is zero everywhere only for the n = 0 harmonic
orif @, = 0.

The case n = 1 deserves some attention. The core
current is rectilinear, uniform and normal to B. Even
though j x Bisirrotational there can be fluid motion.
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A simple example is that where &€ = kx on all walls, the
current flows in the x-direction and the core moves
with uniform velocity
(k/BY(1 — bT/a)
L, = —,
YU+ 1/CY1 + T)— bT/a

(T = tanh a/b},

(47)
out of and into the boundary layer. Meanwhile the
flow in the layer is given by

( cosh(z/b) )

BQ, =E 0 —
Qs €Y\ cosh (a/b)

) o afsinhiz/b) ﬁj

and BQ, = Esin e(cosh @b a (48)
in which E = kb/((1 + 1/CY(1 + T) — bT/a). Fluid
that moves straight across the core returns in the layer
on a curved path that takes it nearer to the plane z = 0.
There is a big difference from the case of a sphere [2]
with & = kx, for which no motion occurs. The
thermoelectric ‘pumping’ tendency of the x-wise &-
gradient is wholly blocked by the walls in the sphere,
but only partially so in the cylinder, in which the fluid
velocity reaches a value less than k/B, the velocity at
which v x B and Seebeck emf’s would balance. This
velocity would be reached if € = kx on the side walls
but & = 0 on the curved walls. If instead & = kx on the
side walls but (45) is satisfied by € on the curved walls,
there is no core motion.

42 &£ 0ddinz
From (21} U" is proportional to sinh nz/b and (11}
leads to the condition atr = b:

d
r V' + ~d—~=0 (n=20). (49)

Equation (20) becomes

1 4y (‘C n*’} c
SRS TR § (N 50
+ P + =y 7 {50)

a2y’
dr?

The curved wallis a core streamline only ifn = O or V’
+ &' = Oat therim ; otherwise the core flow enters and
leaves the layers. Equations (49) and (50) show that V
and hence W and ¢ are determined purely by £ at the
walls z = +a. & on the curved walls affects only the
layers there. £ at z = a may be expanded as a Fourier
series of J, terms and solutions readily deduced in
terms of J, and I,. However, some simpler solutions
exist.
The analogue of (33) is that where, at z = «,

& = Ala*(m* — nPymt — O

4+ Crp™ ™1 + mT/n)/(1 + TY,  (51)
for which, in the core
— By = W = 4(m> — nPazr™ " cosnf. (52)

To avoid singular z-wise vorticity at r = 0 requires m
> 4 unless m = n + 2. Taking m = nis nugatory. The

J. A. SHERCLIFF

axisymmetric case (n = 0) corresponds either to a core
with swirl proportional to z(m > 4) or to a stationary
core {m = 2), the only £-odd situation in which ¢ is
independent of r and 8 and j, is uniform. Ifn = O and m
= 4 there is uniform angular velocity at each z. The
case n = 1. m = 3 1is interesting, for then

~ By = 8 4uzx

and the core motion is purely in the y-direction,
another rectilinear motion into and out of the boun-
dary layer. If & on the curved walls is such that Q, = 0
the complete streamlines are all rectangular in planes x
= CORSt.

Whenever V2§ = Qat:z = +a{ie. & = Ar”) the
solution is a relatively simple analogue of (30yand (31},
with W proportional merely to zI,(cr}. In the axisym-
metric case (n = 0) where & is constant on each wall »
= 4,

(z/a

ST, (¢
—By =W =— Wl r) : (53
Toleh) + ucl{ch}

& being here the value at z = a. Now j, increases with r
like I, and the swirl velocity is proportional to I,. This
case includes the case where & = kz on all walls, which
should be contrasted with the same case for a spherical
container [2], where no motion occurs. Taking n = 1,
& = Ax at z = g, leads to

_ A{z/a)Ab(1 + TH{erjcos
(1= T)(ch) + cbT1yich)
(T = tanh(a/b)}.

~By =W

{54}

Again there is motion across the core, into and out of
the layers, but it is not now rectilinear. There is &
considerable difference from the equivalent sphericai
case [2] with & = Axz/a, say, in which there is solid
body rotation about the x axis. In the cylinder, if & on
the curved walls is such that Q, = 0, the motion still
consists of deformed circulation loops centred on the x
axis, however.

As regards the boundary layers, when n = 0 there is
no high speed flow if & on the curved wall is

only if & on the curved walls is such that
( z  sinh{nz/b)
a  sinh{na/b)

&=V,

it

)+1£&V {55)
Fooa

Departures of & from (55) lead merely to extra fluid
circulations in the boundary layers which do not upset
the core.

5. RECTANGULAR PARALLELEPIPED CONTAINERS

To provide insight into any extra characteristics of
TEMHD that arise when the container has sharp
edges parallel to the field, we consider the case of a
cube of side 2a. As convenient analytic solutions do not
appear to be available, the cube is chosen because its
many symmetries greatly facilitate a numerical treat-
ment by the relaxation method. Figure 3(a) shows the
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yorz

FiG. 3. (a) TEMHD in a cubical container. (b) Relaxation
star.

axes chosen and the domains over which the equations
are to be solved. The cases treated here are those where
& atall wallsis linear in either z or in x and/or y, but the
method could easily be extended. A square mesh of
points with a step-size h equal to a/m, where m is a
power of 2, is employed.

51. £0dd inz

Provided & also has symmetry in the planes OBFG
and OBCD, it is necessary only to solve for ¥V, { over
the triangle BCF and for U, Q,, Q, over the square
CDGF. The case solved here is that where & = kzatall
walls and U and V are treated as one variable V,
obeying different differential equations in different
places. In terms of the relaxation star of points shown
in Fig. 3(b), the improved value of V at the centre is
given from (20) and (21) by

_ZV—aka

Vo = , 6
°7 4+« G6)

inwhichZVequals(V + V, + V3 + V,)anda = 0in
CDGF, C{h/a)* within BCF and 4 C(h/a)* along CF.
The latter is arrived at by first treating 1 as an
extrapoiated dummy at the rim of CDGF or 3 as such
at the rim of BCF and then satisfying (11) by making
Vi — V5 equal in the two cases. An alternative
approach equating normal V gradients using a para-
bolic approximation based on points 6,3,0 and 0,1,5 is
found to give indistinguishable results and to be
somewhat slower. An extension of the dummy concept,
using the symmetries, leads to

_2V4+V3—aka

V
° 34«

(57)
with o = 1/4C(h/a)* at the corner C. Relaxations along
BC, CD and GFB involve the symmetry about these
lines, and V is kept zero along GD. An over-relaxation
factor of 1.6 or 1.7 is convenient, and the step-size is
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FiG. 4. Cubical container with & = kz, C = 1.0: (a)

Distribution of U and V in the walls (‘flattened’). Contours

are labelled with values of (U or V)/ka. Wall current is normal

to these. (b) Fluid motion: core streamlines shown within

BICF are labelled with values of By/kz. The associated

boundary layer flow vectors within CDGF have components
proportional to @, and Q,.

halved progressively until m = 32, relaxation finally
being to within a tolerance of 107°. Values in the
triangle BCI follow from symmetry, and — W and By
follow from —(V + &)z/a. Q.(= —Q,) and Q, are
found from (10) and (12) with G = Q.

Figure 4 shows the results for the case C = 1.0,
drawn with GHOST routines. The right side of Fig.
4(b) shows that, although most of the core motion isan
unimpeded vortex motion about the z-axis, the outer
core streamlines hit the wall and the flow returns in the
boundary layer in the complicated way shown by the
left side of the figure. The return flow is mostly across
the plane z = 0, followed by motion backwards in the
core at negative z, but some flow in the layer carries on
to negative x, while some circulates backwards via the
edge CD. How happily a high speed boundary layer
goes round the right angle bend at CD is a matter that
deserves experimental scrutiny. To show the influence
of C some salient values of V¥, { and @ are given in
Table 1, Q being (@2 + Q2)/%, and i being zero at B.

The main effect of raising C is a strengthening of the
flow in both core and boundary layer as the potential
drops in the walls z = +a become more important.
When C = 0 (perfectly conducting walls) By + & =
const at z = a, and so there is no motion in this case,
where & is constant at z = +a.

The comparison with the other solved cases where &
= kz is instructive. In a sphere [2] or a long, blocked,
circular duct [1] there are no boundary layer effects
and no motion. In the cube the y-wise core motion
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Table 1.
— Vika ~Vika - Vika ~ By 'kz BQ,. ka at w0
O at B at F at ¢ at ¢ and xou
0.2 (1.14228 0.00447 007771 006457 Q00678 (0625
1.0 047875 0.32421 0.26912 .20963 .02218 6878
0.87958 1.33068 0.03639 06875

5.0 0.63987

across the centre plane v = (0 (OB1J} is not unlike the
corresponding motion described by (30) in a long
square duct, but the weak boundary layer motion
across 1J (compare GF) in the cube has no parallel in
the duct, for which @, = 0if & = kz, by (25). The cube
case gives some indication as to how the rectilinear
flow in a long duct would be bent round near and by
flat conducting end walls. This turning round would
occupy a length of order «, not of order a/M'”, as
raight have been expected. In the circular cylinder,
coaxial with the magnetic field, the core motion across
the plane y = 0, determined by (53) when & = kz, with
v, proportional to zI(cx), is very similar to the cube
and duct cases, and there is no high speed boundary
layer here, just as in the duct. The biggest contrast
occurs with the case of the flat-ended cylinder {3] with
its axis in the y-direction, normal to the magnetic field
for which there are no high speed boundary layers and
there is swirl about the y-axis instead. This is possible
because now v, is not zero. The core motion across the
plane x = 0 (OBFG)is remarkably similar in the cube
and the two cylinder cases, however.

52. & Evenin z

Provided & also has symmetry in the plane OBCD
and antisymmetry in the plane OBAE it is necessary
only to solve for ¥, G, ¢ over the triangle ABC and for
U, Q,, O, over the rectangle ACDE. The case solved
first is that where & = 1k(x + vy) on all walls, and V
(which again includes U} is found by relaxation
according to the formulae

Vo =LEV —2). Gy =}EG,

with o = 0 within ABC by (13}, « =
(Ch/a)(@G/3v),m within ACDE by (14) or half this
value along AC, by arguments similar to those used in
Section 5.1, At the corner C the formula becomes

Ve =12V, + Vi — BCH/a)(e6 (59)

{58)

nm)

The gradients of G are found from 3 adjacent points by
a parabolic approximation. The boundary conditions
express the symmetry of ¥ about BC, CD and DE, the
symmetry of G about BC, the values V' = G = Qalong
BAE and the value

G =0 +3kix + ) (60)
along AC, from (16). The method involves iterative
relaxations between G and V (or U ), U derived by
Simpson’s rule being fed back into the G boundary
condition (60) and the G-gradients being fed back into

the V-relations (58) and (59). Reasonably stable con-

0.54890

vergence is achieved by complete relaxation and feed-
back on each line of points {x = constant) before
moving to a new line, and then repeating over the
whole domain until relaxation ceases to be necessary
within a certain tolerance, progressively lowering this
to 107% when m is raised finally to 32. There is still
much scope for improving the numerical method,
however. To show core current in x — y planes a
stream function H equal to -~ [(¢G/3v)dx, is in-
troduced, taking H = 0 along BC, while the core flow
is revealed by By, found from (17), and the boundary
layer flows @, (i.e. —Q,}and @, are found from (8) and
(12) in the forms

BQ.X = L]s'im - U
) (Q‘ dz

A [

and Q, = —~ {61}

. (?‘;/rim .
T

The values in the triangles BCI and ABH are found
by reflections.

Solutions for the case 4 = kx. regarded as the
superposition of the case above and the comparable
case & = Lkix — y) are readily computed, and the
results presented in Fig. S refer to this case, for € = 1.0,
Figure 5(c) shows how the flow across the centre-plane
OBIJ and the equal returning boundary layer flow
across J1, also characteristic of the long blocked
rectangular duct {see Section 3.3} exchange fluid atand
near the end wall CDGF. Most of the flow bends and
hits the top wall CDJT and turns sharply back in the
fast layer there, rather than proceeding to the end itself
where the boundary layer is much slower. In the layers
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F1G. 5. Cubical container with & = kx, C = 1.0: (a)
Distribution of U and V in the walls (‘flattened’). CI appears
twice. Contours are labelled with values of (U or ¥)/ka. Wall
current is normal to these. (b) Core current: current lines are
labelled with values of H/ka. (c) Fluid motion: core stream-
lines shown within BICF are labelled with values of By/ka.
The associated boundary layer flow vectors are shown to a

uniform scale within GF1J (flattened’). CI appears twice.

the fluid returns somewhat closer to the plane z = 0
than in the core, because ¥ in the core is independent of
z but @, in the layers is greatest at z = 0. The
maximum boundary layer flow is at J. The fast flow in
the layer round the corner CD is now oblique. To show
the influence of C some salient values of V, and Q are
given in Table 2. Again larger values of C imply
stronger motions in the core and layer. When C = 0
(perfectly conducting walls) there is no motion but a
uniform core current.

A comparison of the various solved cases for which
& = kx is worthwhile. In a sphere [2] or long blocked
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FIG. 6. & = kx cases. Core velocity at various C. Curve (a):
long blocked square duct (Bv, = k/(4 + 3/C)). Curve (b):
cylinder coaxial with B (case a = b) (Bv, = k/(4.2 + 7.4/C)).
Curve (c): cube (average velocity across plane y = 0). Point
(d): cylinder with axis in x-direction (case where semi-
length/radius = =n/2) (average velocity across plane y = 0).

circular duct [1] there are no boundary layer effects
and no motion. In all the other cases where there are
walls paralle! to the field at or near the top and bottom
(high and low x) there is uniform (or nearly uniform) y-
wise motion in the core across the centre-plane y = 0,
and a return flow in layers at the top and bottom.
These cases include the cube, the blocked retangular
duct, the flat-ended, circular cylinder coaxial with the
field B and the cylinder with its axis in the x-direction
[3]- The misfit is the cylinder with its axis in the y-
direction [3], where the core flow includes a weak
closed circulation and the high-speed boundary layers
can occur only on walls y = constant, feeding only the
core close by. For the other cases, Fig. 6 makes a
comparison of the y-wise velocities deduced from
Section 3.3, equation (47), Table 2 and reference [3], as
C varies. The progression is in line with physical
expectation.

The cube case & = 1k(x + y) has some interesting
features. As Fig. 7 shows, the motion is surprisingly
complicated, for all the values of C tested. Although
most of the core flow travels in the general direction
BA, returning past the corner CD, some of it shortcir-
cuits the corner via the core, above the stagnation
region X, while some fluid circulates up and down at
and near the wall (see By/ka = —0.05).

6. CONCLUDING REMARKS

This paper’s main aim has been to show how
profoundly TEMHD motions are changed when there
are extended areas of wall parallel to the magnetic

Table 2.
—V/ka ~V/ka —V/ka ~V/ka —By/ka  —Byj/ka
C at D at]J at C atI at C at 1 BQ ..../ka
0.2 0.09447 0.14042 . 0.07737 0.09294 0.01080 0.03221 0.04748
1.0 0.33745 0.47432 0.27545 0.31649 0.03940 0.10689 0.15784
5.0 0.71126 0.88286 0.57476 0.59776 0.08830 0.19245 0.28510
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F16. 7. Cubical container with & = $k(x + 3}, C = 1.0. Fluid

motion. Core streamlines shown within AHIC are labelled

with values of Biy/ka. The associated boundary layer flow

vectors are shown to a uniform scale within ACDE. BQ,,.,./ku
= 0.08043 at z = 0, x/a = 0.25.

field. The high speed flows which often occur near
these walls could have severe effects on the heat
transfer needed to sustain a given interfacial tempera-

J. A. SHERCLIFK

ture distribution, or on the temperature distribution
for a given array of external or internal heat sinks or
sources (such as heat release by neutron bombard-
ment). The paper has shown how, for a variety of
geometries, the MHD aspect of the problem can be
mastered (granted the conditions that allow the in-
viscid, inertia-free model to be used) thereby opening
the way to attacking problems where the heat con-
vection has to be calculated. These are much more
challenging, especially where the interface temperature
is not known ab initio, but is determined by the heat
convection, or when, in view of thermal lags and non-
linearity of the convection process, it is not even
certain that the combined heat and fluid flow will be
steady rather than oscillatory. One particular difficulty
is that the odd or even solutions may intermingle when
heat convection is introduced.
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MHD THERMOELECTRIQUE AVEC DES PAROIS PARALLELES
AU CHAMP MAGNETIQUE

Résumé— Un métal liquide entre des parois métalliques sous un champ magnétique est brassé thermoglectri-

quement si la température interfaciale n'est pas uniforme. Quand il y a des zones d'interface paraliele au

champ magnétique uniforme, apparaissent des couches limites rapides qui échangent du fluide avec la région

centrale. En dehors de ces couches limites, la viscosité et 'inertic peuvent étre négligées si le champ

magnétique est intense. On considére les mouvements dans des longues conduites de section rectangulaire,

des cylindres fermés coaxiaux avec le champ et des conteneurs cubiques. Lorsque la température interfaciale
est supposée connue ab initio, les effets intenses de la convection thermique ne sont pas explorés.

THERMOELEKTRISCHE MAGNETOHYDRODYNAMIK BEI ZUM MAGNETISCHEN
FELD PARALLELEN WANDEN

Zusammenfassung—Fliissiges Metall wird zwischen metallischen Winden unter dem Einflull eines
magnetischen Feldes thermoelektrisch geriihrt, wenn die Grenzfidchentemperatur nicht gleichfSrmig ist.
Wenn Grenzflichen parallel zum magnetischen Feld vorhanden sind, treten Grenzschichten mit hoher
Geschwindigkeit auf, die Fliissigkeit mit der zentralen Region austauschen. AuBerhalb dieser Grenzschich-
ten konnen Zihigkeit und Trigheit vernachldssigt werden, wenn das magnetische Feld stark ist. Bewegungen
in langen Kandlen mit rechteckigem Querschnitt, geschlossenen Zylindern, die koaxial zum Feld orientiert
sind, und kubischen Behiltern werden untersucht. Da angenommen wird, dal} die Grenzflichentemperatur
von Anfang an bekannt ist, wird der starke Einflul der konvektiven Wirmeiibertragung nicht untersucht.

TEPMODJIEKTPHUYECKAS MATHUTOIMAPOAHHAMUKA [1PH HAJIOXKEHHU
MATHUTHOIO 1o NAPAJUIETBHO CTEHKAM

Annorauns — Xuaxnit Metann B oOheme. OrPaHHMEHHOM METAUIHYECKMMH CTCHKAMH, K KOTODBIM
IIPHIOXKEHO MATHHTHOE TIOJIE, NIEPEMELIIMBAETCA TIOX JCHCTBHEM TEPMOWIEKTPHYECKHX CHIL €C/H TeM-
nepaTypa Ha rpaHuue pazaena a3 weomnoponsa. Korza rpanuuia pasjiena napa/iieibha NOCTONH-
HOMY MarHMTHOMY TOJIO, BO3ZHHKAIOT TIOFPAHHUHBIC CNOH, cnocoBCTBYIOMHME MaccoobMery ¢ UeH-
Tpansroi obnacTero. [pH CHILHOM MATHHTHOM HOJIE BA3KOCTRIO M uHepuuell 3a npefenaMu HTHX COEB
MOXHO npeseSpeyb, MiccnenoBatus NPOBOMIIACE B YIHHCHHBIX KaHANaX (PSMOYIONBHOTO CeueHMs,
3aMKHYTHIX IIHKAPAX € COOCHO HAlPABICHHEIM TIONEM M KYGHUECKHX pe3epeyapax. Beuay toro, 410
TeMaepaTypa IpanMIBl pa3iella CHHTACTCH BEJWIHHON W3BECTHON, BAMAHME TEIJIOBOH KOHBEXHAH HA
MaccOODMEH He HCCJIeI10BaN0Ch.



